北京奥数网
北京站

2022年大事记

奥数北京站 > 小升初 > 小升初真题 > 小升初四年级 > 正文

华数思维训练导引 四年级下 行程问题(二)

2006-12-01 17:21:03 下载试卷 标签:四年级 行程问题

  1、某解放车队伍长450米,以每秒1.5米的速度行进。一战士以每秒3米的速度从排尾到排头并立即返回排尾,那么这需要多少时间?

  分析:从排尾到排头用的时间是450/(3-1.5)=300秒,从排头回排尾用的时间是450/(3+1.5)=100秒,一共用了300+100=400秒

  答:需要400秒。

  2、铁路旁的一条平行小路上,有一行人与一骑车人同进向南行进,行人速度为每小时3.6千米,骑车人速度为每小时10.8千米。这时,有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟。这列火车的车身总长是多少米?

  分析:设火车速度是每秒X米。行人速度是每秒3.6*1000/60*60=1(米),骑车人速度是每秒1.8*1000/60*60=3(米) 根据已知条件列方程:(X-1)*22=(X-3)*26,解得:X=14(米),车长=(14-1)*22=286(米)

  分析2,骑车人速度是行人速度的10。8/3。6=3倍,22秒时火车通过行人(设行人这22秒所走的路程为1),车尾距骑车人还有2倍行人22秒所走的路程,即距离2;26秒(即又过4秒)时,火车通过骑车人,骑车人行=4*(3/22)=6/11,火车行2+6/11=28/11,火车与骑车人的速度比为28/11:6/11=14:3;火车速度=14*10.8/3=504千米/小时;火车车长=(50400-3600)*22/3600=286米。

  答:这列火车的车身总长是286米。  
 
  3、一列客车通过250米长的隧道用25秒,通过210米长的隧道用23秒。已知在客车的前方有一列行驶方向与它相同的货车,车身长为320米,速度每秒17米。求列车与华车从相遇到离开所用的时间。

  分析:客车速度是每秒(250-210)/(25-23)=20米,车身长=20*23-210=250米

  客车与火车从相遇到离开的时间是(250+320)/(20-17)=190(秒)

  答:客车与火车从相遇到离开的时间是190秒。  

  4、铁路旁有一条小路,一列长110米的火车以每小时30千米的速度向北缓缓驶去。14小时10分钟追上向北行走的一位工人,15秒种后离开这个工人;14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问工人与学生将在何时相遇?

  分析:解法1:工人速度是每小时30-0.11/(15/3600)=3.6千米
  学生速度是每小时(0.11/12/3600)-30=3千米
  14时16分到两人相遇需要时间(30-3.6)*6/60/(3.6+3)=0.4(小时)=24分钟
  14时16分+24分=14时40分

  解法2:(车速-工速)*15=车长=(车速+学速)*12,那么
  工速+学速=(车速+学速)-(车速-工速)=(1/12-1/15)*车长
  而14点10分火车追上工人,14点16分遇到学生时,工人与学生距离恰好是
  (车速-工速)*6=6/15*车长
  这样,从此时到工人学生相遇用时
  (6/15*车长)/[(1/12-1/15)*车长]=(6/15)/(1/12-1/15)=24分

  答:工人与学生将在14时40分相遇。

  5、东、西两城相距75千米。小明从东向西走,每小时走6.5千米;小强从西向东走,每小时走6千米;小辉骑自行车从东向西,每小时骑行15千米。3人同时动身,途中小辉遇见小强又折回向东骑,这样往返,直到3人在途中相遇为止。问:小辉共走了多少千米?

  分析:3人相遇时间即明与强相遇时间,为75/(6.5+6)=6小时,小辉骑了15*6=90千米

  答:小辉共骑了90千米。  

  6、设有甲、乙、两3人,他们步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的3倍。现甲从A地去B地,乙、丙从B地去A地,双方同时出发。出发时,甲、乙为步行,丙骑车。途中,当甲、丙相遇时,丙将车给甲骑,自己改为步行,3人仍按各自原有方向继续前进;当甲、乙相遇时,甲将车给乙骑,自己重又步行,3人仍按各自原有方向继续前进。问:3人之中谁最先达到自己的目的地?谁最后到达目的地?

  分析:按此在新窗口浏览图片

 

  如图,甲与乙在M点相遇,甲走了AM,同时乙也走了同样距离BN。当甲与乙在P点相遇时,乙一共走了BP,甲还要走PB,而丙只走了MA。所以3人步行的距离,甲=AM+PB,乙=BP,丙=MA。甲最远,最后到;丙最短,最先到。

  分析2,由于每人的步行速度和骑车速度都相同,所以,要知道谁先到、谁后到,只要计算一下各人谁步行最长,谁步行最短。将整个路程分成4份,甲丙最先相遇,丙骑行3份,步行1分;甲先步行了1份,然后骑车与乙相遇,骑行2*3/4=3/2份,总步行4-3/2=5/2份;乙步行1+(2-3/2)=3/2,骑行4-3/2=5/2份,所以,丙最先到,甲最后到。

  答:丙最先到达自己的目的地,甲最后到达自己的目的地。

  7、有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米。现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇后6分钟后,甲又与丙相遇。那么,东、西两村之间的距离是多少米?

  分析:甲、乙相遇时,乙比丙多走的路程,正好是甲、丙6分钟的路程之和=(100+75)*6,乙比丙每分钟多走(80-75)米,因此甲、乙相遇时走了:[(100+75)*6/(80-75)]分钟,两村的距离是(100+80)*[(100+75)*6/(80-75)]=37800(米)

  答:东、西两村之间的距离是37800米。 

  8、甲、乙、丙3人进行200米赛跑,当甲到达终点后,乙离终点还有20米,丙离终点还有25米。如果甲、乙、丙赛跑的速度始终不变,那么,当乙到达终点时,丙离终点还有多少米?(答案保留两位小时。)

  分析:乙跑200-20=180米比丙多跑25-20=5米,所以乙到达终点时,丙比乙少跑200/180*5=5(5/9)=5.56(米)

  答:当乙到达终点时,丙离终点还有5.56米。

  9、张、李、赵3人都从甲地到乙地。上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米。赵上午8时从甲地出发。傍晚6时,赵、张同时到过乙地。那么赵追上李的时间是几时?

  分析:甲、乙距离是5*12=60(千米),赵的速度是60/10=6(千米),赵追上李时走了(4*2)/(6-4)=4(小时),这时的时间是8+4=12(点)

  分析2,赵晚走2小时,此时张已走出5*2=10千米,李走出4*2=8千米,从上午8时到下午18:00时,共10个小时,赵、张同时到达乙地,赵每小时比张多走10/10=1千米,那么赵比李每小时多走1+1=2千米,追上需要8/2=4小时,即追上为12:00时。

  答:赵追上李的时间是12时。  
 
  10、快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。这3辆车分别用6分钟、10分钟、12分钟追上骑车人。现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?

  分析:快车6分钟行24*1000*6/60=2400(米),中车10分钟行20*1000*10/60=3333(1/3)(米)
  骑车人速度每分钟行(3333(1/3)-2400)/(10-6)=700/3(米)
  慢车12分钟行2400-700/3*6+700/3*12=3800(米),每小时行3800/12*60=190000(米)=19(千米)

  分析2,6分钟快车追上骑车人时,中车与它们还相差6*(24-20)/60=0.4千米,10分钟时,中车又开了4*20/60=4/3千米,追上骑车人,说明骑车人4分钟骑了4/3-0.4=14/15千米,即骑车人速度=(14/15)*(60/4)=14千米/小时,因为快车用6分钟追上骑车人,由此可知原本三辆汽车落后骑车人6*(24-14)/60=1千米,12分钟时,骑车人离三车出发点1+14*12/60=3.8千米,所以,慢车速度=(3.8/12)*60=19千米/小时。

  答:慢车每小时行19千米。 

  11、客车和货车分别从甲、乙两站同进相向开出,第一次相遇在离甲站40千米的地方,相遇后两车仍以原速度继续前进。客车到达乙站、货车达到甲站后均立即返回,结果它们又在离乙站20千米的地方相遇。求甲、乙两站之间的距离。

  分析:第一次相遇一共走了全程S,其中客车走40千米 第二次相遇两车一共又走了3个全程2S,其中客车走(S+20)千米 所以S+20=3*40,解得S=100(千米)

  答:甲、乙两站之间的距离是100千米。  
 
  12、甲、乙、丙是3个车站。乙站到甲、丙两站的距离相等。小明和小强分别从甲、丙两站同时出发,机向而行。小明过乙站100米后与小强相遇,然后两人又继续前进。小明走到两站立即返回,经过乙站后300米又追上小强。问:甲、丙两站的距离是多少米?

  分析:按此在新窗口浏览图片

  第一次相遇,小明走:全程的一半+100米  从第一次相遇点再到追上小强时离乙站300米,300-100=200米,小明又走:全程+200米,可知第二段距离是第一段距离的2倍。小强第二段也应该走第一段的2倍,100+300=400米,所以第一段走400/2=200米。乙丙距离=200+100=300米,甲丙距离=2*300=600米。

  答:甲、丙两站距离是600米。

  13、甲、乙两地之间有一条公路。李明从甲地出发步行去乙地,同时张平从乙地出发骑摩托车去甲地,80分钟后两人在途中相遇。张平到达甲地后马上折回乙地,在第一次相遇后又经过20分钟在途中追上李明。张平达到乙地后又马上折回甲地,这样一直下去。问:当李明到达乙在,张平共追上李明多少次?

  分析:设李20分钟走1份距离,则80分钟走4份  张20分钟后追上李,李这时走了4+1份距离,张202分钟走4+5=9份,所以速度比:李速度/张速度=1/9。李走完单程时张应该走9个单程,追上的次数是(9-1)/2=4(次)

  答:当李明到达乙地时,张平共追上李明4次。

  14、甲、乙两车分别从A,B两地出发,在A,B之间不断往返行驶。已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(两车同时到达同一地点即称相遇)的地点与第四次相遇的地点恰好相距100千米,那么两地之间的距离等于多少千米?

  分析:甲速度/乙速度=15/35=3/7,第三次相遇时两车一共行驶5个AB,其中甲行5*3/10=1(5/10)AB,第四次相遇时两车一共行驶7个AB,其中甲行7*3/10=2(1/10)AB,这两点的距离是5/10-1/10=4/10AB=100(千米) 所以AB=100*10/4=250(千米)

  答:两地之间的距离是250千米。

  15、两名游泳运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度是每秒游0.6米,他们同时分别从游泳池的两端出发,来回共游了5分钟。如果不计转向的时间,那么在这段时间内两人共相遇多少次?

  分析:5分钟两人一共游了(1+0.6)*5*60=480米  第一次迎面相遇,两人一共游了30米;以后两人和起来每游2*30=60米,就迎面相遇一次,480=30+60*7+30,迎面相遇了8次。甲比乙多游了(1-0.6)*5*60=120米,甲第一次追上乙时,比乙多游30米;以后每多游2*30=60米,就又追上追上乙一次,120=30+60+30,甲一共追上乙2次 两人相遇次数=8+2=10次。

  分析2,甲的速度是每秒游1米,一个来回60秒=1分钟,5分钟共游了5个来回;乙的速度是每秒游0.6米,一个来回100秒,5分钟共游了5*60/100=3个来回;画图很容易可以看出共相遇了几次。

  答:在这段时间内两人共相遇10次。 

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

来源:转载

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

最近发生的事

学校推荐

攻略推荐

北大附中

北大附中初中部共有18个教学班,学生700人左右,教...

点击查看

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站 石家庄站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
本地教育

本地教育资讯 | 推优指导 | 择校攻略

面试技巧 | 经验交流 | 分班考试

特长生 | 小学统测 | 最新试题

热门资料

本地教育信息 | 真题

面试题 | 模拟题

重点中学

北京人大附中 | 北京北大附中

北京十一学校 | 北京二中分校

北京第四中学 | 北京第八中学

小学试题

期中试题 | 口算题

期末试题 | 数学知识点

单元测试 | 练习题

京ICP备09042963号-15 京公网安备 11010802020155号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.