北京奥数网
北京站

2022年大事记

奥数北京站 > 专题 > 教育新闻 > 正文

高中数学九大知识考点

2007-01-19 18:15:31 下载试卷 标签:数学

 1. 高中数学新增内容命题走向
  新增内容:向量的基础知识和应用、概率与统计的基础知识和应用、初等函数的导数和应用。
  命题走向:试卷尽量覆盖新增内容;难度控制与中学教改的深化同步,逐步提高要求;注意体现新增内容在解题中的独特功能。
  (1)导数试题的三个层次
  第一层次:导数的概念、求导的公式和求导的法则;
  第二层次:导数的简单应用,包括求函数的极值、单调区间,证明函数的增减性等;
  第三层次:综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式和函数的单调性等结合在一起。
  (2)平面向量的考查要求
  a.考查平面向量的性质和运算法则及基本运算技能。要求考生掌握平面向量的和、差、数乘和内积的运算法则,理解其直观的几何意义,并能正确地进行运算。
  b.考查向量的坐标表示,向量的线性运算。
  c.和其他数学内容结合在一起,如可和函数、曲线、数列等基础知识结合,考查逻辑推理和运算能力等综合运用数学知识解决问题的能力。题目对基础知识和技能的考查一般由浅入深,入手不难,但要圆满完成解答,则需要严密的逻辑推理和准确的计算。
  (3)概率与统计部分
  基本题型:等可能事件概率题型、互斥事件有一个发生的概率题型、相互独立事件的概率题型、独立重复试验概率题型,以上四种与数字特征计算一起构成的综合题。
  复习建议:牢固掌握基本概念;正确分析随机试验;熟悉常见概率模型;正确计算随机变量的数字特征。

  2. 高中数学的知识主干
  函数的基础理论应用,不等式的求解、证明和综合应用,数列的基础知识和应用;三角函数和三角变换;直线与平面,平面与平面的位置关系;曲线方程的求解,直线、圆锥曲线的性质和位置关系。

  3. 传统主干知识的命题变化及基本走向
  (1)函数、数列、不等式
  a.函数考查的变化
  函数中去掉了幂函数,指数方程、对数方程和不等式中去掉了“无理不等式的解法、指数不等式和对数不等式的解法”等内容,这类问题的命题热度将变冷,但仍有可能以等式或不等式的形式出现。
  b.不等式与递归数列的综合题解决方法
化归为等差或等比数列问题解决;借助教学归纳法解决;推出通项公式解决;直接利用递推公式推断数列性质。
  c.函数、数列、不等式命题基本走向:创造新情境,运用新形式,考查基本概念及其性质;函数具有抽象化趋势,即通过函数考查抽象能力;函数、数列、不等式的交汇与融合;利用导数研究函数性质,证明不等式;归纳法、数学归纳法的考查方式由主体转向局部。
  (2)三角函数
  结合实际,利用少许的三角变换(尤其是余弦的倍角公式和特殊情形下公式的应用),考查三角函数性质的命题;与导数结合,考查三角函数性质及图象;以三角形为载体,考查三角变换能力,及正弦定理、余弦定理灵活运用能力;与向量结合,考查灵活运用知识能力。
  (3)立体几何
  由考查论证和计算为重点,转向既考查空间观念,又考查几何论证和计算;由以公式、定理为载体,转向对观察、实验、操作、设计等的适当关注;加大向量工具应用力度;改变设问方式。
  (4)解析几何
  a.运算量减少,对推理和论证的要求提高。
  b.考查范围扩大,由求轨迹、讨论曲线本身的性质扩大到考查:曲线与点、曲线与直线的关系,与曲线有关的直线的性质;运用曲线与方程的思想方法,研究直线、圆锥曲线之外的其他曲线;根据定义确定曲线的类型。
  c.注重用代数的方法证明几何问题,把代数、解析几何、平面几何结合起来。
  d.向量、导数与解析几何有机结合。

  4. 关注试题创新
  (1)知识内容出新:可能表现为高观点题;避开热点问题、返璞归真。
  a.高观点题指与高等数学相联系的问题,这样的问题或以高等数学知识为背景,或体现高等数学中常用的数学思想方法和推理方法。高观点题的起点高,但落点低,也就是所谓的“高题低做”,即试题的设计来源于高等数学,但解决的方法是中学所学的初等数学知识,所以并没将高等数学引进高中教学的必要。考生不必惊慌,只要坦然面对,较易突破。
  b.避开热点问题、返璞归真:回顾近年来的试题,那些最有冲击力的题,往往在我们的意料之外,而又在情理之中。
  (2)试题形式创新:可能表现为:题目情景的创设、条件的呈现方式、设问的角度改变等题目的外在形式。
  另请注意:研究性课题内容与高考命题内容的关系、应用题的试题内容与试题形式。
  (3)解题方法求新:指用新教材中的导数、向量方法解决旧问题。 

  5. 高考数学命题展望
  主干内容重点考:基础知识全面考,重点知识重点考,淡化特殊技巧。
  新增知识加大考:考查力度及所占分数比例会超过课时比例,将新增知识与传统知识综合考是趋势。
  思想方法更深入:考查与数学知识联系的基本方法、解决数学问题的科学方法。
  突出思维能力考核:主要考查学生空间想象能力、学习能力、探究能力、应用能力和创新能力。
  在知识重组上做文章:注意信息的重组及知识网络的交叉点。
  运算能力有所提高:淡化繁琐、强调能力,提倡学生用简洁方法得出结论。
  空间想象能力平稳过渡:形式不会大变,但将向量作为工具来解立体几何是趋势。
  实践应用能力进一步加强:从实际问题中产生的应用题是真正的应用题,而试题只是构建一种模式的是主干应用题。
  考查创新学习能力:学生能选择有效的方法和手段,要有自己的思路,创造性地解决问题。
  个性品质得以彰显。

关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加

来源:新浪高考 作者:就爱看电视de我

  

  • 欢迎扫描二维码
    关注奥数网微信
    ID:aoshu_2003

  • 欢迎扫描二维码
    关注中考网微信
    ID:zhongkao_com

最近发生的事

学校推荐

攻略推荐

北大附中

北大附中初中部共有18个教学班,学生700人左右,教...

点击查看

教育导航

  1. 北京站 上海站 广州站 深圳站
  2. 天津站 武汉站 成都站 石家庄站
  3. 南京站 杭州站 济南站 苏州站
  4. 郑州站 沈阳站 太原站 重庆站
  5. 长沙站 合肥站 宁波站 青岛站
本地教育

本地教育资讯 | 推优指导 | 择校攻略

面试技巧 | 经验交流 | 分班考试

特长生 | 小学统测 | 最新试题

热门资料

本地教育信息 | 真题

面试题 | 模拟题

重点中学

北京人大附中 | 北京北大附中

北京十一学校 | 北京二中分校

北京第四中学 | 北京第八中学

小学试题

期中试题 | 口算题

期末试题 | 数学知识点

单元测试 | 练习题

京ICP备09042963号-15 京公网安备 11010802020155号

违法和不良信息举报电话: 010-56762110 举报邮箱:wzjubao@tal.com

奥数网版权所有Copyright@2005-2021 www.aoshu.com. All Rights Reserved.