奥数北京站 > 小升初 > 小升初真题 > 小升初奥数专题训练 > 正文
2017-08-14 13:37:13 下载试卷 标签:小学奥数 数论问题 专项练习
小学奥数数论问题专项练习:整数的裂项与拆分
练习题:若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去。再把盒子重排了一下。小聪回来,仔细查看,没有发现有人动过小球和盒子。问:一共有多少只盒子?
解答:
分析:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球。
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的小球数是一些连续整数。
所以将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答。
解:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,
这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球。
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球。
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,
故原来那些盒子中装有的小球数是一些连续整数。
将42分拆成若干个连续整数的和,
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;
又因为42=14×3,故可将42:13+14+15,一共有3个加数;
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数。
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子。
答:一共有7只、4只或3只盒子。
点评:解答本题的关键是将问题归结为把42分拆成若干个连续整数的和。
关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯
微信搜索“奥数网”或扫描二维码即可添加
来源:北京奥数网