奥数北京站 > 小升初 > 小升初真题 > 小升初奥数专题训练 > 正文
2017-08-15 16:41:09 下载试卷 标签:小学奥数 数论问题 专项练习
小学奥数数论问题专项练习:自然数的和
练习题:在整数中,有用2个以上的连续自然数的和来表达一个整数的方法.例如9:9=4+5,9=2+3+4,9有两个用2个以上连续自然数的和来表达它的方法。
(1)请写出只有3种这样的表示方法的最小自然数.
(2)请写出只有6种这样的表示方法的最小自然数.
解答:
分析:(1)关于某整数,它的“奇数的约数的个数减1“,就是用连续的整数的和的形式来表达种数;根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;
(2)有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),有连续的2,3、6、9、10、27个数相加:
364+365;242+243+244;119+120+…+124;
77+78+79+…+85;36+37+…+45;14+1
解:根据(1)知道,有3种表达方法,于是奇约数的个数为3+1=4,对4分解质因数4=2×2,最小的15(1、3、5、15);
有连续的2、3、5个数相加;7+8;4+5+6;1+2+3+4+5;
根据(2)知道,有6种表示方法,于是奇数约数的个数为6+1=7,最小为729(1、3、9、27、81、243、729),
有连续的2,3、6、9、10、27个数相加:
364+365;242+243+244;119+120+…+124;
77+78+79+…+85;36+37+…+45;14+1
关注奥数网官方微信 数学资料、数学真题、更有全国教育资讯 微信搜索“奥数网”或扫描二维码即可添加
来源:北京奥数网